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A B S T R A C T   

A computational method of data analysis based on an artificial neural network (ANN) has been proposed to 
model the behavior of a sol-gel coating modified with different amounts of oxidized multi-walled carbon 
nanotubes (O-MWCNT). The constructed ANN model utilized a single hidden-layer perceptron. The Lev-
enberg–Marquardt algorithm optimization procedure was applied as a learning algorithm. In this model, the 
input variables were the different concentrations of O-MWCNT, the immersion time, and the real part of the 
impedance, and consequently, the imaginary part of the impedance was considered as the output variable. Then, 
the accuracy of the optimized model was evaluated using the correlation coefficient and schematically 
comparing the simulated data with the experimental ones in the Nyquist diagrams. Furthermore, the protection 
performance of the sol-gel layer was enhanced by the incorporation of O-MWCNTs. To this end, the different 
concentrations of the O-MWCNTs up to 0.9 % wt./wt. have been added to a silane layer, and the performance 
was followed by electrochemical exploration using electrochemical impedance spectroscopy (EIS). The results 
revealed the improvement of the protective performance of the silane coating by increasing the content of the O- 
MWCNTs in the matrix, followed by the enhancement of barrier properties. Moreover, the polarization curves, in 
agreement with the AC impedance spectra, reflected the significant decrease in the corrosion current density by 
employing more content of O-MWCNTs in the silane-based coatings.   

1. Introduction 

Over the past 25 years, the EIS technique has been utilized for the 
electrochemical characterization of protective coatings applied on 
metallic substrates. The most widely used method to interpret the 
spectra determined by this technique is based on the modeling by an 
electrical equivalent circuit (EEC). The spectra can be fitted using EEC to 
obtain electrochemical elements corresponding to the degradation 
process and protective function of coatings. However, the EIS technique 
has some limitations including the lack of a suitable electrical equivalent 
circuit model for some coatings, data scattering, stationarity and line-
arity, and so signal drift that sometimes happens in low frequencies 
[1–9]. Therefore, it is necessary to use other techniques and methods 

along with the EIS technique to keep track of the electrochemical 
behavior of the coated samples immersed in an aggressive solution. 

An Artificial Neural Network (ANN) machine learning model is 
mathematical modeling that enables solving complex nonlinear math-
ematical problems in prediction and optimization without any pre-
defined mathematical relationship between its variables. In fact, a 
neural network is a series of algorithms endeavors to recognize under-
lying relationships in a set of data through a process that mimics the way 
used by the human brain to operate. Neural networks refer to systems of 
neurons, either organic or artificial in nature. They can be adapted by 
changing the input data; therefore, the network generates the best 
possible result to redesign the output criteria. The concept of neural 
networks having their roots in artificial intelligence is swiftly gaining 
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popularity in the development of engineering systems and optimization. 
Self-learning capability can be considered one of the most important 
features of ANN. ANN can obtain the empirical relationship between 
independent and dependent variables [10–12]. Therefore, this mathe-
matical model seems ideally appropriate for the prediction and 
modeling of EIS data that are known to be complex and nonlinear. 

Colorado-Garrido et al. presented a predictive model based on ANN 
for the electrochemical impedance Nyquist plots at different exposure 
times to analyze the corrosion resistance of the pipeline steel. In this 
model, the Levenberg–Marquardt was considered as a training method 
and the real impedance and time were used as the input variables, and 
the imaginary part of impedance was obtained as the output variable 
[13]. A. Bassam et al. proposed an ANN model to determine the type of 
corrosion in the pipeline steel. In their model, four input variables 
including the real part of impedance, the imaginary part of impedance, 
exposure time, and inhibitor concentration were set as input variables 
[14]. In another study, the real part of the impedance and different 
chemical compositions of nanocomposite polymer electrolyte system as 
input and imaginary part of impedance as output were set for the cre-
ation of an ANN machine learning model in order to investigate the 
effect of the chemical composition on the impedance spectra of nano-
composite polymer electrolyte system [15]. Méndez-Figueroa et al. 
predicted the electrochemical impedance in two SiO2-nanostructured 
patinated quaternary bronzes by using statistical tools and feed-forward 
backpropagation ANN modeling. By using the statistical tools, they 
found the correlation between the input and output parameters, 
revealing that some parameters (frequency, corrosion rate, immersion 
time, real and imaginary part of impedance) had the highest variability 
[16]. Wang et al. investigated the stray current corrosion process in a 
chloride solution by employing the combination of electrochemical and 
ANN analyses [17]. Their ANN model was built up of Nyquist outcome, 
in which ion concentration, stray current density, corrosion time, and 
real impedance were the input variables and imaginary impedance was 
set as the output of the predicted model. In another study, M. Ghobadi 
et al. achieved accurate results in the prediction of corrosion resistance 
of a lanolin coating incorporated with inhibitors via ANN [18]. 

Although many studies have been carried out on ANN to interpret 
and predict EIS data, some of them have been along with plenty of 
limitations. The most crucial limitations include the use of trial-and- 
error methods to optimize the neurons of the hidden layer as well as 
the lack of immediate access to a large amount of EIS data due to the 
time-consuming nature of the corrosion tests. Therefore, the purpose of 
the present study is to develop a new ANN prediction model that sim-
ulates the corrosion behavior of the coating after eliminating the 
mentioned limitations. Consequently, in the first step, the effect of 
different concentrations of O-MWCNTs including 0.05, 0.3, 0.6, and 0.9 
% w/w on the protective performance of a silane layer was investigated. 
The silane layer was composed of methyltriethoxysilane (MTES), gly-
cidoxypropyltrimethoxysilane (γ-GPS), and tetraethylorthosilicate 
(TEOS) precursors. Then, an ANN prediction model of different imped-
ance Nyquist plots was developed and trained with experimental data to 
predict the performance of the coatings. To improve the performance of 
the traditional neural network in predicting the performance of coatings 
101 different criteria were used to optimize the neurons of the hidden 
layer. Over-fitting is one of the most common problems that occur 
during ANN training [19]. One strategy that can be used to solve this 
problem is known as K-fold cross-validation (CV). In this process, the 
data set is randomly split into a “K” independent subsets or folds 
wherein each iteration of each subset is used as a testing set while the 
remaining “K-1” subset is used to train the ANN. Therefore, in each fold, 
a model is created and, in each model, the network is tested with a new 
data set [20]. Normally, it is recommended to split the data set into 10 
subsets to evaluate the generalization capacity of the network [21]. 
Consequently, to avoid over-fitting in this paper, a 10-fold CV was used. 
All calculations were carried out by the Neural Network Toolbox func-
tion in MATLAB software version 9.8.0.635 (R2020a). 

2. Experimental 

2.1. Materials 

Silane precursors were tetraethylorthosilicate (TEOS), methyl-
triethoxysilane (MTES), and Glycidoxypropyltrimethoxysilane (γ-GPS) 
purchased from Merck Co. (Germany). The silane solution contained 
ethyl alcohol and acetic acid supplied from Zakaria Jahrom Co. (Iran). 
Substrate was steel panel with the chemical composition of Fe:97.7, 
Si:0.415, Mn:1.39, Co:0.0559, C:0.19, Cu:0.0429, Nb:0.0481, Mo: 
0.018, and Cr:0.026 wt% acquired from Foolad Mobarakeh Co, Iran. To 
increase the wettability of the silane layer on the steel panels, an acid 
pretreatment was performed by using sulfuric acid and benzothiazole 
(Merck Co.) as pH controller and corrosion inhibitor, respectively. 
MWCNTs having a wall number of 3–15 were provided by Nanostartech 
Co. (Iran). 

2.2. Oxidation of MWCNTs 

0.5 g of MWCNT was poured into a beaker consisting of 0.1 L of 
sulfuric acid of 75 % and nitric acid of 65 % with a volumetric ratio of 
3:1, respectively. Then, the mixture was stirred for a day at 100 ◦C 
before adding 0.5 L of distilled water and stirring for 30 min. Next, the 
solution was centrifuged for 15 min at the rotational speed of 4500 rpm. 
Finally, the suspension was washed a couple of times with distilled water 
to create O-MWCNT [22]. 

2.3. Sample preparation 

Mechanical polishing of the steel panels was done with sandpapers 
starting from 400 to 1000 grit size. Then, the samples were degreased 
with acetone to prepare a clean surface. Prior to applying the silane 
coating, specimens were treated with an acidic solution to produce an 
activated layer on the mild steel surface, leading to the wettability of the 
coating on the substrate. For this purpose, panels were dipped into a 
sulfuric solution at pH 3 for 10 s in which benzothiazole was used as an 
inhibitor followed by rinsing and drying instantly [23,24]. 

Sol-gel solution with the concentration of 20 % w/w was prepared by 
magnetically stirring TEOS, MTES, and γ-GPS organosilanes equally for 
one day in the medium of deionized water and ethyl alcohol in which the 
pH was set at 3 by means of acetic acid [25]. 

The influence of oxidation time of carbon nanotubes on the corrosion 
resistance properties of the silane coating has been studied at one 
distinct concentration [26]. In this study, different silane nano-
composites coatings (0.05, 0.3, 0.6, and 0.9 % w/w versus the precursor 
content) were generated by dispersing the various amounts of O- 
MWCNT into the acidic water with the same pH of the silane solution via 
ultrasonication with the power of 150 W for half an hour (TOPSONICS 
instrument). Then, this mixture was added to the silane solution 15 min 
before the coating fabrication. 

The dip-coating method was employed to apply the silane film with/ 
without O-MWCNTs on the acid-treated specimens. Panels were 
immersed into the neat silane and 0.05, 0.3, 0.6, and 0.9 % silane-based 
nanocomposite solutions for 1 min with the withdrawal rate of 200 mm/ 
min to produce coated samples denoted as Sil, Sil-C1, Sil-C2, Sil-C3, and 
Sil-C4, respectively. Finally, the samples were dried at room tempera-
ture for 24 h and subsequently placed in an oven at 150 ◦C for 30 min. 
The schematic representation of the experimental steps from the 
oxidation step to the prepared coated sample is depicted in Fig. 1. 

2.4. Characterization 

Carbon nanotubes were characterized by thermogravimetric analysis 
(TGA) in the N2 atmosphere from 25 to 800 ◦C with a scan rate of 10 ◦C/ 
min employing STA 1500 instrument. Also, zeta potential (ZP) of the 
nanotubes immersed at different pHs in the water medium was carried 
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out through the Horiba SZ-100 apparatus. The morphology of the O- 
MWCNT, as well as the silane coating thicknesses, were visualized by 
field emission scanning electron microscopy (FE-SEM). X-ray diffraction 
(XRD) test was employed to indicate d-spacing and the phase compo-
sition of both pristine and oxidized MWCNT. The PANalytical instru-
ment with the radiation source of Cu Kα in the 2θ domain of 5–80◦ was 
exploited. Fourier-transform infrared spectroscopy (FT-IR) analysis was 
conducted in the wavenumber domain of 4000–450 cm− 1 utilizing a 
Perkin-Elmer instrument to examine the effect of different concentra-
tions of O-MWCNTs on the structural properties of the silane network. 
The hydrophobicity properties of silane coatings with/without various 
concentrations of O-MWCNTs were studied by water contact angle 
(WCA) measurement. 

2.5. Electrochemical assessment 

A three-electrode cell was utilized to investigate the corrosion pro-
tection performance of the coated samples with the EIS in 0.1 M NaCl 
solution. A saturated calomel electrode (SCE), a platinum electrode, and 
the coated panels were designed as reference, auxiliary, and working 
electrodes, respectively. The electrochemical response of the samples 
covered by a mixture of beeswax-colophony except 1 cm2 was recorded 
by the Ivium Compactstat instrument at open circuit potential (OCP). 
EIS tests were done by a sine wave with a peak-to-peak amplitude of 10 
mV in the frequency range from 0.01 to 104 Hz. Then, the results were 
fitted by Zview3.1c software to access the electrochemical parameters. 
For each set of measurements, at least two identical samples were 
examined to ensure the reproducibility of the EIS outcome. The standard 
deviation of each reported parameter originated from the fitting of the 
identical samples in a similar immersion time. Then by elemental 
comparison between the outcome of each group of samples, the standard 
deviation was mathematically calculated and reported below the fitting 
table. To this end, potentiodynamic polarization test was conducted in 
the potential range of ±250 mV from OCP after 24 h immersion in 0.1 M 
NaCl solution, utilizing a 1 mV/s scan rate. 

For the ANN modeling, the number of input data used in the network 

was 378 based on the total data points of EIS tests. In fact, the EIS test of 
each group of samples at a specific immersion time contained around 32 
points obtained by the Ivium Compactstat instrument. These data were 
fed into the neural network in the form of a matrix. Accordingly, each 
row of the 378 × 3 dimensional matrix represented a specific point of the 
real part of impedance that was obtained at a certain concentration of O- 
MWCNT in the silane coating and immersion time. Similarly, each row 
of the 378 × 1-dimensional matrix represented a specific point of the 
imaginary part of impedance in the Nyquist diagram. 

3. Results and discussion 

3.1. Nanotube characterization 

3.1.1. ZP and FE-SEM analyses 
The effect of the oxidation process on the surface charge of carbon 

nanotubes was studied by the ZP technique in the pH domain of 3–9 as 
well as the FE-SEM observation of the tube-like structure of O-MWCNT 
depicted in Fig. 2. It was comprehended that the O-MWCNT had a lower 
charge than the pristine MWCNT in the whole interval. In fact, car-
boxylic acid groups imposed a negative charge on the surface bringing 
about an electrostatic repulsive force between the nanoparticles. 
Therefore, the more the repulsive force, the more dispersion stability 
could be expected in the solgel solution [27]. It is worthwhile to mention 
that the pristine MWCNT had no charge at the pH of almost 7 which is in 
parallel with the works of other scientists [28–30]. 

3.1.2. TGA and XRD results 
TGA measurement was performed to analyze the thermal stability of 

MWCNT before and after the oxidation process. The results are shown in 
Fig. 3. Only one step of weight loss (about 14 %) can be distinguished at 
500 ◦C in the spectra of MWCNT which was the initiation point of 
MWCNT decomposition. This result indicated that the pristine MWCNT 
is not previously functionalized. While MWCNTs might have been 
contaminated with other impurities during their production explaining 
the slight decrease of plateau detected before reaching 500 ◦C. [31,32]. 

Fig. 1. Schematic illustration of the oxidizing step (a), dip-coating of mild steel panels in silane solution along with O-MWCNTs nanomaterials (b), and the fabricated 
silane-based nanocomposite coating (c). 
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After the oxidation process, two other steps of weight loss can be seen for 
O-MWCNT. The first one was attributed to the water evaporation that 
happens before 100 ◦C, and the other one which occurs between 100 and 
300 ◦C was related to carboxylic acid decay [33,34]. Based on the 
graphs, the weight losses for the former and the latter steps were 9 % and 
9.5 %, respectively. The successful oxidation of MWCNT and production 
of the carboxylic acid groups are confirmed. 

The XRD patterns of pristine MWCNT and O-MWCNT were also 
determined in Fig. 3. The two intense peaks at 2θ = 43◦, 26◦ were 
assigned to (1 0 0) and (0 0 2) Bragg reflection planes corresponding to 
the interlayer spacing and in-plane regularity, respectively [35]. In 
particular, the diffraction peak at 26◦ was sharper compared to the rest, 
illustrating the removal of impurities and amorphous carbon upon the 
oxidation process of MWCNT. Noteworthy to mention that the d-spacing 

Fig. 2. ZP measurement (a) and FE-SEM observation of O-MWCNT in 100 kX (b1) and 250 kX (b2) magnifications.  

Fig. 3. TGA (a) and XRD (b) outcomes of MWCNT and O-MWCNT.  
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of the (0 0 2) plane almost remained unchanged after oxidation which 
was 3.45 Å and 3.42 Å for O-MWCNT and MWCNT, respectively. 
Moreover, the graphitization degree has not been varied after func-
tionalization which is in agreement with other studies [36,37]. 

3.2. Coating examination 

3.2.1. FT-IR analysis 
The effect of different concentrations of O-MWCNT on the structure 

and network properties of the silane coating was studied by the FT-IR 
test exhibited in Fig. 4. The stretching and bending vibration modes of 
O-H can be respectively related to the peaks at 3434 and 1630 cm− 1 

wavenumbers [38]. The C-H vibration peaks at 2876 and 2934 cm− 1 

could likely originate from the γ-GPS and MTES molecules, respectively 
[39,40]. The presence of intense peaks in the wavenumber domain of 
900 to 1200 cm− 1 revealed the successful silica network formation 
through hydrolysis and condensation reactions [41]. Specifically, the 
peaks at 1040 and 1100 cm− 1 wavenumbers are closely corresponded to 
the ladder-like and cage-like structures of Si-O-Si, illustrating the for-
mation of more cage-like structures of siloxane after the addition of O- 
MWCNT to the silane formulation [42,43]. Noteworthy to mention that 
the interaction between the carboxylic group of O-MWCNT and silanol 
groups could be evidenced by the Si-O-C shoulder at 1193 cm− 1 wave-
number. The intensity ratio of Si-O-Si/O-H was evaluated to determine 
the effect of various concentrations of O-MWCNTs on the silica cluster 
formation. To enumerate, this ratio was found to be 2.22, 3.55, 5.16, 
6.18, and 9.02 for Sil, Sil-C1, Sil-C2, Sil-C3, and Sil-C4, respectively. It 
may mean that by increasing the content of O-MWCNT in the silane 
network not only the barrier performance of silane-coated samples was 
intensified, but also the matrix formation particularly the cage-like 
structure upon hydrolysis and condensation reactions was promoted. 

3.2.2. WCA examination 
The WCA measurement data of the silane-coated samples is provided 

in Fig. 5. The hydrophobicity of the silane coating was enhanced as the 
concentration of the O-MWCNTs increased. This result was in parallel 
with the FT-IR outcome, reflecting the number of polar groups such as 
hydroxyl groups and/or unreacted silanol groups diminished by the 
incorporation of O-MWCNTs into the coating formulation. Specifically, 
the Sil-C4 had the highest WCA among samples, revealing the lowest 
intention of aggressive electrolyte to penetrate through the coating. 

3.2.3. FE-SEM observation 
The cross-section images of the nanocomposite coating are demon-

strated in Fig. 6. At first glimpse, it was comprehended that the thickness 
of silane coatings was heightened by the addition of O-MWCNT. In 
particular, the thickness of the Sil, Sil-C1, Sil-C2, Sil-C3, and Sil-C4 
samples equals 1.59 ± 0.21, 3.38 ± 0.32, 5.15 ± 0.29, 5.75 ± 0.38, 
and 6.24 ± 0.35 μm, respectively. The thickness increment probably 
stems from the viscosity enhancement of silane coating by employing 
more content of O-MWCNTs [26,44]. Therefore, the higher the content 
of O-MWCNT, the thicker the silane coating. Vividly, the barrier prop-
erties of a coating are intensified as its thickness is enlarged. Therefore, 
the higher thickness of silane coatings along with the evolution of a 
more cage-like structure of siloxane could make silane nanocomposites 
to acts better than the neat silane coating in terms of corrosion resistance 
properties. 

3.2.4. Electrochemical performance of the silane-based nanocomposites 
The EIS spectra of the silane-coated samples with different amounts 

of O-MWCNT after 24 h immersion in 0.1 M NaCl are indicated in Figs. 7 
and 8 as Nyquist and Bode graphs, respectively. As can be seen in Fig. 7, 
whatever the amount of incorporated O-MWCNT, the corrosion pro-
tection performance of the neat silane has been enhanced in all cases. 
The diameter of the Nyquist semi-circles got enlarged by adding O- 
MWCNT nanoparticles to the matrix illustrating the increment of the 
barrier performance of the system. The systems showed a two-frequency 
response which means the corrosion reaction was controlled by both 
charge transfer and ionic resistance. The semi-circle in high and low 
frequencies denoted the film resistance (Rf) and charge transfer resis-
tance (Rct), respectively. Considering the term (RT) which denotes the 
total resistance of the system as the sum of Rf and Rct, it can be vividly 
comprehended that Sil-C4 had the maximum anti-corrosion property 
among the others up to 24 h of immersion in the aggressive medium. The 
EIS spectra were fitted with an appropriate electrical equivalent circuit 
(EEC) (Fig. 9) summarized in Table 1. Additionally, the electrolyte and 
aggressive ions penetrate the coating through the defects and pathways 
eventually. According to the fact that all kinds of non-ideal surfaces have 
some roughness and heterogeneity, employing a constant phase element 
(CPE) instead of an ideal capacitance is a promising way to elucidate EIS 
results [45,46]. The impedance of the CPE equals: 

ZCPE =
1

Y0(iω)n (1) 

Fig. 4. FT-IR diagrams of silane coatings without/with different contents of O-MWCNT.  
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where the admittance of CPE is Y0, and n is the frequency dispersion 
factor varying from 0 (pure resistance) to 1 (pure capacitance). Apart 
from the thickening of silane coatings by intake of more O-MWCNT 
nanoparticles, the ideality of the coating was also enhanced as the nf 
exponent of CPE reported in Table 1. In other words, the Sil-C4 sample 
had not only the highest thickness but also the surface homogeneity and 
ideality as compared to the Sil sample. By looking at the low-frequency 
impedance, it was concluded that by elapsing the immersion time the 
barrier performance of the samples became lower and lower. In contrast, 
no big difference in the low-frequency impedance between each EIS 
survey in the Sil-C4 sample is detected with spectra remaining almost 
stable with immersion time. The EIS result was in good agreement with 
the FT-IR outcome, illustrating that the increment in the content of O- 
MWCNT in the silane coating not only increases the barrier performance 
but also facilitates the siloxane formation upon hydrolysis and 
condensation reactions. The improvement of barrier properties origi-
nated from filling the probable pores and defects in the coating as well as 
enlarging the diffusion pathways. It should be mentioned that the 
highest thickness along with its relatively hydrophobic properties of Sil- 

C4 makes it the best anti-corrosion coating system among others. 

3.2.5. Analysis of nanocomposite coating based on ANN model 
The considered ANN model was a single hidden-layer perceptron, 

and the Levenberg-Marquardt (LM) algorithm optimization procedure 
was applied as a learning algorithm. It has been found empirically that a 
single hidden layer in the construction of the ANN with an optimum 
number of nodes would be enough to model many engineering problems 
[10]. In this work, the activation functions used in the output and hid-
den layers were linear (Purelin) and hyperbolic tangent sigmoid (Tan-
sig), respectively [47]. The three input layer nodes respectively related 
to three variables which were the concentration, the exposure time (in 
hours), and the real part of the impedance, while the output layer node 
belonged to the imaginary part of impedance (schematically depicted in 
Fig. 10). 

The EIS data set was normalized by linear min-max normalization 
code before applying it to the network. By using this procedure, all the 
input and output variables are placed between − 1 and 1. The advantages 
of this method would be listed as speeding up the convergence process, 

Fig. 5. The WCA evaluation of the coated samples relating to Sil (a), Sil-C1 (b), Sil-C2 (c), Sil-C3 (d), and Sil-C4 (e).  
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eliminating the dimensional impact between input indicators, and 
facilitating ANN learning [48–50]. Data set normalization was obtained 
by the following transformation: 

y =
(ymax − ymin) × (x − xmin)

(xmax − xmin)
+ ymin (2)  

Fig. 6. Cross-section images of different silane coatings corresponding to Sil (a), Sil-C1 (b), Sil-C2 (c), Sil-C3 (d), and Sil-C4 (e).  

S. Akbarzadeh et al.                                                                                                                                                                                                                            



Progress in Organic Coatings 174 (2023) 107296

8

where x and y correspond to input and output data, respectively. 
The optimal number of hidden nodes in each hidden layer which 

depends on the complication and type of the fields of study plays an 
important role in ANN design. If the number of hidden nodes in each 
hidden layer is more than required then the learning process leads to 
overfitting of the data; while, a few numbers of hidden nodes are 
selected, then the model could not find any relations between the input 
and the target values [51]. At present, the following strategy has been 
exploited to determine the optimal number of nodes. At first, a series of 
models of ANN with various numbers of nodes were designed followed 
by testing each model separately and calculating its learning error. At 
last, the number of nodes in the model having the lowest error was 
selected as an optimal number of nodes in a hidden layer of an ANN. In 
this study, 101 different criteria were evaluated to optimize the number 
of hidden nodes, and the results were compared with various statistical 
errors given in Table S1. It is based on the work of Sheela and Deepa who 
proposed a method to find the number of hidden neurons in a multilayer 
neural network for wind speed prediction. They reviewed methods to fix 
several hidden neurons in neural networks for the past 20 years. Then 
they proposed a new method (101 various criteria) to fix the hidden 
neurons. This criterion is derived from 101 equations as a function of 
input neurons (n) that have been substantiated using the convergence 
theorem. Then they compared this method with other existing models by 

using statistical errors illustrating that the proposed model could 
improve accuracy and minimize error [50]. The lowest error is the main 
basis for the determination of the presented criteria. 

The performance of the presented model was evaluated by various 
statistical error criteria such as Mean Square Error (MSE), Mean Relative 
Error (MRE), and Mean Absolute Error (MAE) [50]. 

MSE =
∑N

i=1

(
Y''

i − Yi
)2

N
(3)  

MRE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒

(
Y˝

i − Yi
)

Yi

⃒
⃒
⃒
⃒ (4)  

MAE =
1
N

∑N

i=1

(
Y˝

i − Yi
)

(5)  

where Yi
" and Yi are the experimental data and predicted data, respec-

tively and N is the total amount of data. 
According to Table S1, the best ANN model was the one with the 25 

nodes in the hidden layer and its criterion was calculated by using the 
equation of (8n + 1) / (n − 2). The performance of this model has been 
evaluated by 3 statistical errors including MSE, MRE, and MAE which 
were 0.00099606, 0.0020, and 0.0106, respectively. Therefore, it could 

Fig. 7. Nyquist diagrams correspond to the experimental EIS data (marker) plus EEC fitting (solid line) after 24 h immersion in 0.1 M NaCl solution related to Sil (a), 
Sil-C1 (b), Sil-C2 (c), Sil-C3 (d), and Sil-C4 (e). 
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be brought about that this proposed criterion was effective for the pre-
diction model of different impedance Nyquist plots. The next step was to 
determine the number of epochs or in other words, the number of 
complete passes through the training dataset. The number of epochs is 
identified by utilizing the trial-and-error method [52]. The Root Mean 
Square (RMS) error is a function of the number of cycles as illustrated in 
Fig. 11. A range of 50 to 1000 epochs was tested and as shown in Fig. 11 
the lowest RMSE value was obtained with 600 epochs. 

After completing the network training process, the accuracy of the 
model can be evaluated by either a graphical representation of the data 
from the Nyquist plot and prediction results from the neural network 
outputs or calculation of the correlation coefficient. The experimental 
data from the Nyquist and Bode plots were compared with the simulated 
output from the ANN model in Figs. 12 and 13, illustrating a reliable 
agreement between simulated diagrams and experimental data. 

The predictability of the ANN model or the correlation coefficient (R) 
takes values between − 1 and 1 defined as follows: 

R =

∑N

i=1
(yi − y)(xi − x)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(yi − y)2 ∑N

i=1
(xi − x)

√ (6)  

where xi, yi, x, and y are the predicted output, actual data, mean of 
output, and an average of actual data, respectively. R2 is the square of 
the correlation coefficient and its values range between 0 and 1. In 
particular, 1.0 shows a perfect correlation while 0.0 indicates no linear 
relationship between experimental and predicted data [53]. The linear 
regression line of predicted versus experimental component of the 
impedance is demonstrated in Fig. 14. As can be seen, no scattering 
could be distinguished in the entire data range and accordingly R2 value 
was 0.9879. The reasonably high values reflected the reliable predictive 
power of the constructed model. The formula for the regression lines 
(best fitting line) was calculated and presented in Eq. (7). 

y = 1.0317x+ 3761.9 (7) 

Consequently, the constructed ANN model had a high level of 
adaptability and accuracy in predicting imaginary components of 
impedance, and accordingly, the Nyquist and Bode diagrams could be 
predicted over various concentrations of O-MWCNT in different im-
mersion times. 

3.2.6. Polarization measurement 
The polarization examination was carried out for silane-based coated 

samples after 24 h immersion in 0.1 M NaCl solution depicted in Fig. 15. 
The positive impact of higher concentrations of O-MWCNTs could be 
clearly comprehended as the corrosion potential (Ecorr) shifted to more 
noble values and the (icorr) decreased significantly. To enumerate, icorr 
for Sil, Sil-C1, Sil-C2, Sil-C3, and Sil-C4 samples equals to 5.40, 2.28, 

Fig. 8. Bode curves of the silane-based nanocomposites for Sil (a), Sil-C1 (b), Sil-C2 (c), Sil-C3 (d), and Sil-C4 (e) in different immersion times in the saline solution; 
The experimental and EEC fitting data are presented in forms of marker and solid line, respectively. 

Fig. 9. The used EEC for fitting the EIS results in different immersion times.  
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0.49, 0.23, and 0.04 μA/cm2, respectively. The polarization outcome 
was in parallel with the EIS analysis, illustrating the enhancement of the 
barrier performance of the silane-based coating by increasing the 
number of O-MWCNTs in the silane network. It may arise from the 
thickening of the coatings along with the development of the cage-like 
structure of the silane network by increasing the intake of O-MWCNTs 
in silane formulation. Furthermore, the prolongation of diffusive path-
ways for aggressive elements could also play a crucial role in the barrier 
performance of the coating which is the highest for the Sil-C4 thanks to 
the highest amount of O-MWCNTs. 

4. Conclusions 

In this work, the pristine MWCNT was functionalized with the 
promising oxidation process certified with ZP, TGA, and XRD analyses. 
Different concentrations of obtained O-MWCNT were impregnated into 
the silane matrix to increase the barrier performance of the silane-based 

nanocomposite. The FE-SEM images illustrated that the thickness of the 
silane coating was heightened by increasing the content of O-MWCNT in 
the silane coating. The FT-IR and WCA measurements confirmed each 
other in making a more hydrophobic coating by increasing the incor-
poration of O-MWCNT. By increasing the content of O-MWCNT in the 
coating up to 0.9 % wt./wt., the barrier performance of the silane 
coating was enhanced confirmed by the EIS test. Moreover, the polari-
zation analysis, in parallel with the EIS test, exhibited a significant 
depression of the corrosion current density by introduction of more O- 
MWCNTs into the silane coatings thanks to improvement in the barrier 
performance. Consequently, the diffusive pathways have been pro-
longed to initiate redox reactions on the substrate. Meanwhile, by taking 
advantage of ANN, the imaginary part of impedance in different im-
mersion times related to the silane-based nanocomposites was pre-
dicted. In fact, the input variables were different concentrations of O- 
MWCNT, immersion time, and the real part of the impedance and 
consequently imaginary part of impedance was considered as the output 

Table 1 
Electrochemical parameters obtained by fitting the experimental data with the appropriate EEC.  

Sample Immersion time (h) Rct (kΩ cm2)a CPEdl Rf (kΩ cm2)d CPEf log |Z|10mHz 

Y0 (μΩ− 1cm− 2 sn)b nc Y0 (μΩ− 1cm− 2 sn)e nf 

Sil  3  172.7  19.3  0.62  54.8  0.110  0.79  5.22  
6  96.3  39.4  0.70  9.1  0.250  0.75  4.90  

24  66.7  60.8  0.73  3.0  0.420  0.74  4.73 
Sil-C1  3  89.5  1.51  0.61  55.4  0.120  0.74  5.12  

6  78.1  3.75  0.59  16.4  0.250  0.71  4.99  
24  75  7.56  0.57  4.5  0.430  0.70  4.85 

Sil-C2  3  548.8  0.41  0.66  154.8  0.042  0.86  5.83  
6  257.1  0.49  0.65  54.1  0.066  0.84  5.50  

24  219.6  1.01  0.64  19.3  0.092  0.84  5.37 
Sil-C3  3  380.3  0.75  0.55  984.4  0.017  0.88  6.09  

6  678.19  0.46  0.66  102.6  0.026  0.87  5.88  
24  417.6  0.81  0.65  52.2  0.038  0.85  5.64 

Sil-C4  3  587.6  0.16  0.64  1020  0.016  0.88  6.12  
6  452.6  0.57  0.62  514.1  0.019  0.90  5.99  

24  359.5  0.79  0.61  286.5  0.022  0.89  5.81  

a The standard deviation range for Rct values was 3.6 %–12.5 %. 
b The standard deviation range for Y0 values was 3.0 %–10.7 %. 
c The standard deviation range for n values was 1.9 %–9.0 %. 
d The standard deviation range for Rf values was 4.8 %–9.7 %. 
e The standard deviation range for Y0 values was 5.3 %–9.6 %. 
f The standard deviation range for n values was 2.6 %–8.5 %. 

Fig. 10. The topological structure of the ANN model.  
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variable. Mathematically and graphically representation proved that the 
modeling was accurate enough to predict the imaginary component of 
impedance in different times of exposure and various usage of O- 
MWCNT in the silane solution. 

Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.porgcoat.2022.107296. 
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Rodríguez, J. Uruchurtu, Neural networks for nyquist plots prediction during 
corrosion inhibition of a pipeline steel, J. Solid State Electrochem. 13 (2009) 
1715–1722. 

[14] A. Bassam, D. Ortega-Toledo, J.A. Hernandez, J.G. Gonzalez-Rodriguez, 
J. Uruchurtu, Artificial neural network for the evaluation of CO 2 corrosion in a 
pipeline steel, J. Solid State Electrochem. 13 (2009) 773–780. 

[15] M.R. Johan, S. Ibrahim, Neural networks for Nyquist plots prediction in a 
nanocomposite polymer electrolyte (PEO-LiPF6-EC-CNT), Ionics (Kiel) 17 (2011) 
683–696. 

[16] H. Méndez-Figueroa, D. Colorado-Garrido, M. Hernández-Pérez, R. Galván- 
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[39] M. Fedel, E. Callone, S. Diré, F. Deflorian, M.G. Olivier, M. Poelman, Effect of Na- 
Montmorillonite sonication on the protective properties of hybrid silica coatings, 
Electrochim. Acta 124 (2014) 90–99. 

[40] F. Deflorian, S. Rossi, L. Fedrizzi, M. Fedel, Integrated electrochemical approach 
for the investigation of silane pre-treatments for painting copper, Prog. Org. Coat. 
63 (2008) 338–344. 

[41] S. Akbarzadeh, L. Sopchenski Santos, V. Vitry, Y. Paint, M.G. Olivier, Improvement 
of the corrosion performance of AA2024 alloy by a duplex PEO/clay modified sol- 
gel nanocomposite coating, Surf. Coat.Technol. 434 (2022), 128168. 
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